记忆结构设计最佳实践

记忆类型选择

树形明文记忆

最适用于:知识管理、研究助手、层级结构数据

tree_config = {
    "backend": "tree_text",
    "config": {
        "extractor_llm": {
            "backend": "ollama",
            "config": {
                "model_name_or_path": "qwen3:0.6b"
            }
        },
        "graph_db": {
            "backend": "neo4j",
            "config": {
                "host": "localhost",
                "port": 7687
            }
        }
    }
}

通用明文记忆(带向量索引)

适用于:对话式 AI、私人助理、问答系统

general_config = {
    "backend": "general_text",
    "config": {
        "extractor_llm": {
            "backend": "ollama",
            "config": {
                "model_name_or_path": "qwen3:0.6b"
            }
        },
        "vector_db": {
            "backend": "qdrant",
            "config": {
                "collection_name": "general"
            }
        },
        "embedder": {
            "backend": "ollama",
            "config": {
                "model_name_or_path": "nomic-embed-text"
            }
        }
    }
}

纯明文记忆(仅文本)

最适用于:简单应用、原型开发

naive_config = {
    "backend": "naive_text",
    "config": {
        "extractor_llm": {
            "backend": "ollama",
            "config": {
                "model_name_or_path": "qwen3:0.6b"
            }
        }
    }
}

容量规划

如果你启用了调度器,可以设置记忆容量来控制资源使用情况:

scheduler_config = {
    "memory_capacities": {
        "working_memory_capacity": 20,        # 工作记忆
        "user_memory_capacity": 500,          # 用户记忆
        "long_term_memory_capacity": 2000     # 长时记忆
    }
}