记忆结构设计最佳实践
记忆类型选择
树形明文记忆
最适用于:知识管理、研究助手、层级结构数据
tree_config = {
"backend": "tree_text",
"config": {
"extractor_llm": {
"backend": "ollama",
"config": {
"model_name_or_path": "qwen3:0.6b"
}
},
"graph_db": {
"backend": "neo4j",
"config": {
"host": "localhost",
"port": 7687
}
}
}
}
通用明文记忆(带向量索引)
适用于:对话式 AI、私人助理、问答系统
general_config = {
"backend": "general_text",
"config": {
"extractor_llm": {
"backend": "ollama",
"config": {
"model_name_or_path": "qwen3:0.6b"
}
},
"vector_db": {
"backend": "qdrant",
"config": {
"collection_name": "general"
}
},
"embedder": {
"backend": "ollama",
"config": {
"model_name_or_path": "nomic-embed-text"
}
}
}
}
纯明文记忆(仅文本)
最适用于:简单应用、原型开发
naive_config = {
"backend": "naive_text",
"config": {
"extractor_llm": {
"backend": "ollama",
"config": {
"model_name_or_path": "qwen3:0.6b"
}
}
}
}
容量规划
如果你启用了调度器,可以设置记忆容量来控制资源使用情况:
scheduler_config = {
"memory_capacities": {
"working_memory_capacity": 20, # 工作记忆
"user_memory_capacity": 500, # 用户记忆
"long_term_memory_capacity": 2000 # 长时记忆
}
}